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Summary. To develop a quantitiative theoretical treatment for the effects of neutral 
macrocyclic antibiotics on the electrical properties of phospholipid bilayer membranes, this 
paper proceeds from the known ability of such molecules to form stoichiometric lipid-soluble 
complexes with cations and deduces the electrical properties that a simple organic solvent 
phase would have if it were made into a membrane of the thinness of the phospholipid bilayer. 
In effect, we postulate that the essential barrier to ion movement across a bilayer membrane 
is its liquid-like hydrocarbon interior and that the neutral macrocyclic antibiotics bind mono- 
valent cations and solubilize them in the membrane as mobile positively charged complexes. 
Using the Poisson-Boltzmann equation to describe the equilibrium profile of the electrical 
potential, it is shown that an excess of the positive complexes over all the other ions is expected 
in the membrane as a net space charge for appropriate conditions of membrane thickness and 
values of the partition coefficients of the various ionic species and without requiring the 
presence of fixed charges. Describing the fluxes of these complexes by the Nernst-Planck 
equation and neglecting the contribution to the electric current of uncomplexed ions, theoret- 
ical expressions are derived for the membrane potential in ionic mixtures, as well as for the 
limiting value of the membrane conductance at zero current when the membrane is interposed 
between identical solutions. The expressions are given in terms of the ionic activities and anti- 
biotic concentrations in the aqueous solutions so as to be accessible to direct experimental 
test. Under suitable experimental conditions, the membrane potential is described by an 
equation recognizible as the Goldman-Hodgkin-Katz equation, in which the permeability 
ratios are combinations of parameters predicted from the present theory to be independently 
determinable from the ratio of membrane conductances in single salt solutions. Since this 
identity between permeability and conductance ratios is expected also for systems obeying 
the "Independence Principle" of Hodgkin and Huxley, the applicability of this principle to 
membranes exposed to antibiotics is discussed, and it is shown that this principle is compatible 
with the permeation mechanism proposed here. 
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Neutral macrocyclic molecules, such as the Macrotetrahde Antibiotics 
Nonactin, Monactin, Dinactin, and Trinactin (Gerlaeh & Prelog, 1963; 
Graven, Lardy, Johnson, & Rutter, 1966) are known to increase markedly 
the cation permeability of phospholipid bilayer membranes, whether 
natural (Pressman, 1965) or artificial (Mueller & Rudin, 1967; Lev & 
Buzhinsky, 1967; Andreoli, Tieffenberg, & Tosteson, 1967). The mechanism 
by which these permeability-inducing antibiotics produce their effects is 
not presently known. They have been variously conjectured to create ion- 
specific tunnels by Mueller and Rudin (1967), or alternatively to act as 
molecular carriers by Lardy, Graven, and Estrade-O (1967), Pressman 
(1968 a), and Tosteson (1968). The question of whether their action is on 
the bulk properties of the membrane or on its surface properties has also 
been raised (Tosteson, 1968). These conceivable mechanisms have been 
discussed briefly elsewhere by Eisenman (1968). 

On the other hand, the equilibrium chemistry of such molecules is well 
understood. Simon and his colleagues have demonstrated that Nonactin 
and Monactin form stoichiometric one-to-one complexes with K + and 
Na + in methanol (Pioda, Wachter, Dohner, & Simon, 1967); Pressman 
(1968a, b) has presented data for such stoichiometry in the salt extrac- 
tion into toluence-butanol produced by valinomycin and a variety of other 
cyclic antibiotics. We have shown how the effects of such molecules on 
the ionic distribution equilibria between aqueous solutions and an 
appropriate solvent (e. g., n-hexane) chosen to represent the interior of the 
membrane can be compared unambiguously with their effects on the 
membrane potential and electric resistance properties of artificial phos- 
pholipid bilayers (Eisenman, Ciani, & Szabo, 1968). The configuration of 
the Nonactin-K + complex has been identified in crystals (Kilbourn, 
Dunitz, Pioda, & Simon, 1967), and studies on the rate of formation and 
dissociation of such complexes is under active study by Eigen and his 
colleagues (Eigen & DeMaeyer, 1969). It is therefore possible to attack 
the question of the mechanism of action of such molecules by proceeding 
from the known equilibrium chemistry of these molecules in bulk solvents 
to their expected effects on membranes. 

Given the knowledge of the chemistry of these molecules in bulk 
solvent phases [which will be characterized for the macrotetralide anti- 
biotics in the second paper of this series (Eisenman, Ciani, & Szabo, 1969), 
referred to hereafter as II], the present paper will deduce theoretically 
what electrical properties such a solvent phase would have if it were made 
into a membrane of the thinness of a phospholipid bilayer. The third 
paper (Szabo, Eisenman, & Ciani, 1969 b; referred to hereafter as III) will 
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test to what extent the properties of phospholipid bilayers are observed 
to be similar to or different from this. Such an approach, which may seem 
oversimplified, is not unreasonable in view of the following facts. (1) The 
hydrocarbon tails in the interior of the membrane are liquid-like (Schmitt, 
1939; Luzatti & Husson, 1962; Van Deenen, 1965; Chapman, 1966; Cass 
& Finkelstein, 1967), and the interior of artificial bilayers contains sig- 
nificant amounts of solvents such as decane (Henn & Thompson, 1968). 
(2) The presence of the charged polar-head groups of the lipid can be 
shown theoretically to be unimportant over a significant range of experi- 
mental conditions (Ciani, Szabo, & Eisenman, 1969b). (3) The rate 
processes of forming and dissociating the complexes in aqueous solutions 
are so rapid that these are unlikely to be rate limiting in the aqueous 
phase (Eigen & DeMaeyer, 1969); and the possibility that such com- 
plexes, when once formed in the membrane interior, may not dissociate 
within the lifetime of diffusion across the membrane will be shown not to 
alter the expectations deduced in the present paper. 

We begin this series of papers by carrying out a theoretical analysis, 
using no arbitrary assumptions as to electroneutrality o ras  to profiles of 
concentration or electric potential within the membrane, of the effects of 
neutral macrocyclic molecules on the electrical properties of a simple 
model in which the phospholipid bilayer membrane is represented as a 
thin liquid hydrocarbon phase some 60 A thick interposed between two 
aqueous solutions, thereby explicitly neglecting the effects of the polar- 
head groups of the lipid which are analyzed elsewhere (Ciani et al., 1969 b). 
For such a membrane it is possible to deduce expressions for the membrane 
potential and membrane resistance at zero current as a function of the 
concentrations of antibiotic and ions in the aqueous solutions. In addition, 
quantitative interrelationships between such properties as membrane 
potential and electric resistance are predicted unambiguously. 

The following paper, II, examines the equilibrium chemistry of such 
molecules and shows how the salt extraction properties conferred by 
these molecules on organic solvents are expected to be related to the 
electrical properties measureable for phospholipid bilayer membranes. 
The effects of such molecules on the ionic distribution equilibria between 
aqueous solutions and organic solvents are deduced theoretically and 
measured experimentally, and an appropriate set of equilibrium constants 
is characterized for these antibiotics from which a variety of their effects 
on bilayer membranes can be "predicted" 

The third paper of this series, III, characterizes the experimentally 
observed effects of the Macrolide Actin antibiotics on the electrical prop- 
1" 
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erties of phospholipid bilayer membranes and compares these effects with 
the quantitative expectations of the theory of the present paper. Remark- 
ably good agreement is found not only between theory and experiment for 
bilayers, but also between the observed bilayer electrical properties and 
those "predicted" from the equilibrium measurements of the second paper. 
These results strongly support the validity of the initial postulate that neu- 
tral antibiotics such as the Macrotetralide Actins produce their effects on 
lipid bilayer membranes by acting as molecular carriers of cations. 

In two further articles, the effects of the charged polar head groups of 
the lipid are examined (Ciani et al., 1969b) and the rate limiting step for 
ion permeation of bilayer membranes is elucidated (Ciani et al., 1969a). 
Some salient conclusions from these five papers have been presented to 
several recent Symposia (Eisenman et al., 1968; Szabo et al., 1969 a). 

Description of the System 

The simplest model for the effects of neutral macrocyclic molecules 
(such as the Macrotetralide Actins illustrated in Fig. 1) on lipid bilayer 
membranes consists of a thin (e. g., 60 A) membrane phase composed of a 
low dielectric constant liquid interposed between two aqueous solutions 
of univalent electrolytes containing a single species of a neutral ion- 
binding molecule, which will be referred to as a "neutral carrier" and will 
be denoted by S (or s when used as a subscript). The macrocyclic mole- 
cules are assumed to be preferentially partitioned in the organic phase 
(Szabo, 1969) and to form stoichiometric complexes with cations (Pioda 
et al., 1967), thereby solubilizing them in the membrane. Such a membrane 
is schematized in Fig. 2, omitting for simplicity of presentation the effects 
of charged polar-head groups of the lipid. The effects of this surface charge 
are considered elsewhere and shown to be important only in the limits 
of very low antibiotic and ionic concentrations (Ciani et al., 1969 b). 

The organic phase need not be thin (although this is the only membrane 
situation we will examine here) nor need it be studied as a membrane. 
Indeed, for purposes of comparison with measurements of equilibrium 
salt extraction, the membrane will be considered in paper II to be ex- 
panded into a bulk liquid phase, and the effects of neutral macrocyclic 
molecules on salt extraction equilibria will be deduced for confrontation 
with the appropriate membrane measurements given in paper III. 

Denoting the generic cation and anion by I + and X (i and x when 
used as subscripts), respectively, the following reactions are assumed to 
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Fig. 1 a. Chemical formulas of the macrotetralide actin antibiotics 

occur in the aqueous, as well as in the membrane  phases: 

and 

ais  I + + S ~  IS+; Ki + -  
Kis aias 

K i s  x - a i s x  

ais ax 

(1) 

IS + + X -  ~ I S X ;  (2) 
Kisx 
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Fig. 1 b. Space-filling model for Nonactin. A Corey-Pauling-Koltun model of the Nonactin 
molecule is shown in the configuration which we believe to be likely to exist in a low di- 
electric constant solvent or in the interior of the membrane, where the molecule is folded 
around the cation, sequestering it in relation to the four carbonyl oxygens within its interior 
(in the configuration similar to that of the Nonactin-K + complex in crystals; Kilbourn et al., 
1967). The size of the cavity is seen to be appropriate to accomodate the potassium ion of 
ionic radius 1.33 A illustrated below. It can be seen that the overall configuration and 
external size of the molecule is not expected to vary greatly for different alkali cations within 
the interior. Note also that the addition of methyl groups to form the more highly methylated 

members of the series would not alter greatly the external size of the molecule 

where  a deno tes  the act ivi ty  of  the species in moles  per  liter. R e a c t i o n  (1) 

descr ibes  the f o r m a t i o n  of  a cha rged  c o m p l e x  (IS +) be tween  the  ca t ion  

and  the neu t ra l  car r ie r ;  r eac t ion  (2) t akes  in to  a c c o u n t  the poss ibi l i ty  of  

neu t r a l i za t i on  of this cha rged  c o m p l e x  (or " c o m p l e x e d - c a t i o n " )  by  asso-  

c ia t ion  with the an ion  X - .  I f  n is the n u m b e r  of  species of  ca t ions  and  m 

tha t  of  the anions ,  n species of  cha rged  complexes ,  IS +, a n d  n .  m neu t ra l  

complexes ,  ISX, will be p resen t  in the sys tem as a result  of  the occu r rence  

of  r eac t ions  (1) and  (2). 
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Fig. 2. Diagram of the membrane. A diagram of the membrane is indicated in which it is 
seen to be interposed between two aqueous solutions whose electric potentials are designated 
by ' and ". The species 1% S, IS +, X-, and ISX refer to the free ion, the neutral molecular 
carrier, the complexed-cation, the free anion, and the neutralized complex, respectively. 
Although these species are illustrated within the membrane phase, the arrows at the membrane- 
solution interfaces indicate that equilibria exist between these species and their counterparts 

in the aqueous solutions 

Moreover,  the condition of heterogeneous equilibrium at the mem- 
brane-solution boundary  can be symbolically described by partition 

equilibria of the type 

a s S ~ S*" k s = (3) 
k~ ' as 

for the neutral species (e. g., S and ISX), and of the type 

* exp I zrF~P* ] 
a,. RT - 

R -+ ~ R - + * ;  k , -  (4) 

a" exp E Z"F ORT 1 

for the charged species (e.g., R + = I + ,  IS +, X-),  where r is the electro- 

static potential, z r is the valence of R +, and the asterisk (,) will be used to 

designate any quanti ty characteristic of the membrane phase. 

Assumption (i). Assuming ideal behavior for all species in the mem- 
brane phase as well as for the species, S, IS +, and ISX in the aqueous 
phase (activities will be used for the ionic species I + and X -  in the aqueous 
phase since activity coefficient corrections can be made for these), the 
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equilibria of reactions (1) and (2) in the aqueous phase are given by 

and 

Cis 
Ki+s - ; i =  1, 2, .. . ,  n (5) 

ai Cs 

Cisx 
Kis x -  Ci~ax , i=1,2 ,  . . . ,n ,  x =  1,2, . . . ,m  (6) 

where Cs, Ci~, Cis x are concentrat ions in moles per liter, a~ and ax the 
ionic activities in the same units, and K~,  Ki~ ~ the equil ibrium constants 
in liters per mole of reactions (1) and (2), respectively. Experimental  
evidence in suppor t  of such ideal behavior  will be presented in the following 
paper (Eisenman et al., 1969). 

Condition of Thermodynamic Equilibrium 

When the membrane  is interposed between solutions of identical 
composi t ion at the same temperature  and pressure (as is done in paper III 
when measuring the limiting value of the resistance at zero current  of the 
membrane  exposed to the same antibiotic and salt concentrat ions on 
both  sides), the system is in the rmodynamic  equil ibrium; consequently,  
the electrochemical potentials of all the permeant  components  are con- 
stant th roughou t  the whole system. Considering for simplicity the aqueous 
solutions to be infinitely extended in the x-direction normal  to the mem- 
brane boundaries,  we can therefore write 

/7~ (x) = const~; - oo < x < + oo (7) 

where c~ designates any of the permeant  components  and fi is the electro- 
chemical potential  in units of energy per mole. 

Fol lowing the general convent ion of thermodynamics  applied to 
electrochemical systems,/7 is separable into two parts 

fi~,= #~, + z~,F O (8) 

~b being the electric potential  and #~ the chemical potential. (For neutral  
components ,  for which z~=0, there is no electrical contr ibut ion to fi~.) 
The chemical potential  can also be written as a function of molar  con- 
centrat ion as 

/~ = #(~c)~ (T, P ) + R T l n  y~ C a (9) 

where y, is the molar  activity coefficient, and the s tandard chemical 
potential  #~c)0 is a constant  for a given temperature  and pressure. 
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Since the electric potential terms, z~ F 0, in Eq. (8) cannot be assumed 
a priori to be constant near the membrane-solution interfaces, the number 
of variable parameters in the set of Eq. (7) (e.g., the concentrations C a 
and the electric potential t)) exceeds by one the number of equations. 
Therefore, an additional relation, namely the Poisson equation, is required 
to define the system and, in particular, to evaluate the concentration 
profiles of the individual ionic species inside the membrane. The deter- 
mination of these concentration profiles will be shown later to be essential 
to the calculation of the membrane conductance; but it will be found 
unnecessary to evaluate these explicitly when calculating the membrane 
potential, as will now be demonstrated. 

Membrane Potential at Zero Current 

The electric current density, I, is defined as the sum of the fluxes of all 
charged species: 

y =  z, J,s+ 2 z, J,+ zxL. (10) 
i = 1  i = 1  x = l  

For the present system z i ,=z~= - z x =  1. 

Assumption (ii). Following the proof to be given in the Appendix that 
at equilibrium the concentrations in the membrane of the bare ions I § 
and X -  are negligible compared to the concentration of the complexed- 
cations IS  + , it is reasonable to assume, at least for small deviations from 
equilibrium, that the fluxes J~ and Jx can be neglected compared to J~, 
provided the mobility of the IS  + complex is not unduly low. Therefore, 

n 

I ~ - F  ~ Jis. (11) 
i = 1  

The membrane potential data to be presented in paper III support the 
validity of this approximation. 

Expressing -/is in terms of the Nernst-Planck flux equations, Eq. (11) 
becomes for zero current 

EdC** F d ~ * l  
o =  (12) 

i=, R T  dx  J 

where u* s is the mobility of the IS  + complex in the membrane. 
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Assumption (iii). Assuming the mobilities of IS + to be constant and 
n 

dividing by ~, u*~ C*~, we obtain 
i = 1  

dO* -__RT d in u* C*~(x) (13) 
dx F dx i 

which can be integrated directly across the membrane thickness from 0 
to d to give 

R T ~ u*~ C*s (d) 
0* (d) - ~* (0) = - - - F i n  ~=~n (14) 

C*s(O) 
i = 1  

This is the expression for the diffusion potential within the membrane  
in terms of C*s(d) and C*~(0), the membrane concentrations of IS + at the 
interfaces with solutions (") and ('), respectively. Note that the result 
expressed by Eq. (14) requires only the validity of the Nernst-Planck 
differential equation within the membrane  and is completely independent 
of the particular profiles of the concentrations and of the electric po- 
tential; consequently, it implies neither an assumption as to steady state 
nor as to the existence of equilibrium for reactions (1) within the interior 
of the membrane.  

Assumption (iv). Provided the flux of IS + does not perturb the equi- 
librium existing at the membrane-solution interfaces as well as in the 
aqueous solutions, the membrane concentrations at 0 and d can be ex- 
pressed in terms of the bulk solution concentrations through Eq. (4) as 

C*~ (0)= C'i~ kis exp I - -  

C*~(d) = C'/~ k,s exp I - -  

r 
R T  ( 0 * ( 0 ) - 0 ' )  , (15) 

R T  (O*(d) -0" )  �9 (16) 

When Eqs. (15) and (16) are inserted into Eq. (14), a fortunate cancellation 
of the diffusion potential, underlined below, is seen to occur 

R T ~ u*s ki~ C'i's 
0* (d) - ~* (0) - In ,=1 

V U*s C'i  
i = l  

e 0 " + 0 * ( a ) -  
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so that the total membrane potential V 0 (i.e., the potential difference be- 
tween solutions (") and (')) is given simply by 

n 

R T E u*~ ki~ C'i~ 
V o = 0 " - 0 ' =  ~ -  In ~=' 

i = 1  

(17) 

which expresses the dependence of the membrane potential on the con- 
centrations of the complexed-cations in the aqueous phases. 

Since the aqueous concentrations of C~s (as well as of C~ and C~)  
are generally unknown, it is desirable to express these in terms of the 
known ionic activities and of the total concentration of neutral carriers, 
cTot present in the aqueous phase. This can be done (see Appendix A) by 

S 

solving the system of Eqs. (5) and (6) with respect to C~s and Cis ~ and com- 
bining with the equation of conservation of mass for the species S: 

i = 1  i = 1  x = l  

Using the equilibria (1) and (2) and Eqs. (5A) and (6A) deduced in 
the Appendix, Eq. (17) can be written 

/=1 u*skj~K~i+J ai 
V0 = ~  In ~ + 

2 [ u* ki~ Ki+~-] ,, 
i=1 u*skj~K;+l ai 

R T C T~ 
+ - ~ -  In cTot,, 

- - $  

RT 
+ ~ -  In 

l + ~ K i  +a'i'+~ ~K~ +Ki~ xa' i'aj 
i=I i=I  x=l  

l + ~ K i  +a' i + ~  ~Ki  +Kis xa' ia' x 
i=i  i=i  ),=i 

(19) 

in terms of the known composition variables in the aqueous solutions and 
the indicated parameters u* K +, ( is, kis, Kisx) of the system. 

No restrictions as to the constancy of the individual fluxes have been 
made in the above derivation; and it therefore applies not only in the 
steady state, but also transiently (i.e., as soon as equilibrium conditions 
are established throughout the aqueous phases subsequent to a change in 
aqueous concentrations). It is also important to emphasize that the der- 
ivation of Eq. (19) requires no assumption of electroneutrality nor the 
explicit separate evaluations of the boundary and diffusion potentials, 
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and that it follows directly from the condition that the predominant  
permeant charged species are the cation complexes. 

The first term of Eq. (19) is recognizible as equivalent to the classical 
Goldman-Hodgkin-Katz equation (Goldman, 1943; Hodgk in&Katz ,  
1949), which is also characteristic of a variety of ion exchange membranes 
(Sandblom & Eisenman, 1967). It is convenient to define the bracketed 
combination of parameters in this term as the permeability ratio, PJP~. 

= [ u*s k,s 
P] _u*skj~Kfi l" (20) 

This combination of parameters, which is a constant for a given membrane 
and antibiotic, determines the relative effects of the ionic species on the 
membrane potential. I t  is seen to consist of the ratio of mobilities of the 
complexed cations IS + and JS + within the membrane multiplied by a 
particular combination of equilibrium parameters: namely, the partition 
coefficients and the association constants defined in Eqs.(4) and (1), 
respectively. This particular product of equilibrium parameters is shown 
in paper II to be measurable experimentally by characterizing the equi- 
librium extraction of salt by antibiotics into appropriate bulk solvent 
phases. 

The second term of Eq. (19) indicates that the membrane potential is 
expected to depend linearly on the logarithm of the ratio of the total 
antibiotic concentrations in the two aqueous solutions. This term becomes 
zero when the antibiotic concentration is kept the same on both sides of 
the membrane, as is the case in paper III. We will therefore restrict the 
present considerations to this case, anticipating however that the effects 
of varying the ratio of antibiotic concentrations on the two sides of the 
membrane has been the subject of a separate study (Ciani et al., 1969a), 
where it is shown that the analysis of the potential and conductance 
behavior under these conditions permits the identification of the rate 
limiting step for carrier permeation (see Szabo et al., 1969a). 

The third term of Eq. (19) results from the possibility of significant 
formation of IS + and ISX complexes in the aqueous solution. For suf- 
ficiently dilute solutions, this term reduces to zero. It will also be zero even 
at high salt concentrations provided the constants K~ + and Kis x are 
sufficiently small in the aqueous solution, as is expected to be the case from 
the values of K~+~ characteristic of Nonactin and Monactin in methanol  
(Pioda et al., 1967), as well as from the lack of any sign of significant for- 
mation of aqueous complexes of these species observed in the distribution 
equilibria between H20 and CH2C12 phases presented in paper II. 
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Therefore, for the same concentration of antibiotic on both sides of 
the membrane and over a wide range of salt concentrations, Eq. (19) is 
expected to reduce to the simple form: 

R T  In i=1 ~-j ai 
- - - -  ( 2 1 )  

V ~  ~ P i  ,, 

i=l  P j  ai 

which for the usual experimental situation of a mixture of only two species, 
I + and J+, can be written: 

a}+ P, , 

R T  In ~-j a~ - - -  ( 2 2 )  V~ F ,, p~ ,, 

aj + ~ a i 

Paper III will demonstrate the completely satisfactory manner in which 
Eq. (21) describes the membrane potentials characteristic of phospholipid 
bilayers exposed to Nonactin, Monactin, Dinactin, and Trinactin. 

When the third term of Eq. (19) is not negligible, its effect is to flatten, 
and even to reverse [when the neutralization reaction (2) predominates 
over the complexing reaction (1)], the slope expected from the first term. 
This can be seen most easily by considering Eq. (19) for the case in which 
a single salt, IX, is present in both solutions at different concentrations. 
For simplicity, we will assume ideal behavior of the ions in the aqueous 
phases 

a i = Ci;  ax= C x (23) 

and note that the concentration of the antibiotic, (7 a~ is in practice so low 
with respect to the salt concentration as to allow the electroneutrality 
condition 

Ci + C~s = C x (24) 
to be approximated by 

C~ = C~. (25) 

Under  these conditions, Eq. (19) can be differentiated with respect to 
In C' i' to give 

F ~V o - I + K ~  Kisx -iC"2 
" C" 4- K + C" 2 �9 (26) R T  ~ In C i 1 + Ki + - i  - is Kisx - i  

E q  (26) shows that the Nernst slope for cations ( - 1 )  expected at high 
dilution can be reversed to that characteristic of anions (+1)  when 
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K i  + K i s  x C" 2 ,, - i  >> 1 + Ki+~ C i . This comes about because, when reaction (2) 
predominates over reaction (1), an increase of the ionic concentration C'{ 
actually decreases the concentration of the permeable charged species, IS  +. 

Membrane Conductance at Zero Current 

To calculate the electric conductance of the membrane when inter- 
posed between identical solutions of varying salt and antibiotic con- 
centrations, the use of the Poisson equation is required for the evaluation 
of the concentration profiles of the individual ionic species within the 
membrane. The treatment given below follows the line indicated by 
Verwey (1940) and Verwey and Overbeek (1948) for the theory of double- 
layer interaction ocurring when two liquid phases are separated by a 
thin layer of a different liquid and, in particular, uses the same assumption 
that the dielectric constants are uniform throughout the individual phases 
while presenting a sharp discontinuity at the interfaces. The simple form 
of the Poisson-Boltzman equation is used, regarding all ions as point 
charges and neglecting discrete ion and image effects, as in these treatments, 
as well as in those given by Mauro for fixed charge membranes (1962) and 
by Laiiger, Lesslauer, Marti, and Richter, (1967) and Everitt and Haydon 
(1968) for bilayer membranes. 

The Poisson Equation in the Aqueous  Phase 

Denoting by D the permittivity of water and by p (x) the charge density 
at x, the Poisson equation in the aqueous phase is: 

d2O _ 4 u p ( x ) .  ~ - m < x < 0  
(27) 

d x  2 D ' ) d < x <  +oo 

where 0 and d designate the x coordinates of the left and right boundaries 
of the membrane, respectively. Recalling that in our model both species 
I + and IS  + bear positive charges, the net charge density, resulting from 
the excess of ions of one sign, (e. g., cations less anions) at a given position x, 
is given by 

We can now express p (x) in terms of the potential, @ (x), as well as of the 
concentrations in the bulk of the solutions: Ci(_+oo ), Ci,(_+~) and 
C:,(+_ ~). Defining the value of the electric potential at x =  - ~  as zero, 
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and omitting, for brevity, the symbol (_+oo) at these extremities (e.g., 
g~( +_ oo)--/~; 0(_+ oo)--0, etc.), the condition for equilibrium, Eq. (7), can 
be rewritten as: 

G(x)=G; 

or, recalling Eqs. (8) and (9): 

Ca(x)= 
y (x) 

-oo<x___0 
d<=x < + oo (29) 

C e -z~r ~ -  oo < x < 0  
~' ' [d  < x < + oo (30) 

where we express the potential in units of RT/F as: 

4)=F ~,/RT. (31) 

Substituting Eq. (30) in Eq. (28) yields: 

n 

(32) 

Yx Cxe~(X) ; 
x=l y~(x) d<=x< +oo. 

Assumption (v). Provided the values of the activity coefficients y(x) 
near the membrane solution interfaces do not vary appreciably from 
those of the bulk solutions, so that they can be approximated by constants 
in the entire aqueous phases, and recalling that electroneutrality 

Ci+ i Cis-  ~ C~=0 (33) 
i=1 i=1 x = l  

must be satisfied in the bulk of the solution (i.e., at x =  _+ ~), Eq. (32) can 
be reduced to 

m ~ - - ~ < X < 0  
P(x)=-2F(x~=lC~)sinhr~(x); (d<__x< +oo (34) 

which gives the explicit dependence of the charge density at a given 
position on the bulk concentrations and the difference of electric potential 
of that point from that of the bulk solution. 

Introducing the Debye length in the aqueous phase, 

t 8 r C F 2  " 2 Cx 
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Eq. (27) becomes 

d2 ~b(x) 1 f - o o < x < 0  
dx ~ - L2 sinh 4) (x); [d __< x < + oo (36) 

which is the well known Poisson-Boltzman equation (Verwey & Over- 
beek, 1948). 

The Poisson Equation in the Membrane Phase 

For the present equilibrium case, Eq. (7) implies 

#~ ( x ) = ~ ;  O<x<_d (37) 

where, as usual, we denote by an asterisk the quantities in the membrane. 
By use of the explicit form given by Eqs. (8) and (9) for the electrochemical 
potentials in both aqueous and membrane phases, and recalling that the 
electric potential has been defined as zero at x =  _+ oo for the present 
situation where the solutions are identical on both sides of the membrane, 
Eq. (37) may be written: 

C*(x)=k~a~e-~4'*(x); O < x < d .  (38) 

The activity of ~ in the aqueous phase, a s, is related to the molar con- 
centration and the molar activity coefficient by 

a~ = y~ C a (39) 

and the partition coefficient of the species ~, k~, is defined as 

t l ( c )  0 _ i~(e) O*  ==expE = -] (40) 

in terms of the standard chemical potentials. 

Using relation (38) to express the concentrations of the ionic species 
I +, IS +, and X -  inside the membrane, the net charge density in the 
membrane is 

p * ( x ) = F  kiai+ ~ k i s C  i e -+*(':)- k~a~e 4,*(x ; O<_x<_d (41) 
\ i = 1  i=1 x = l  

where the aqueous concentrations Cis have been used instead of the 
aqueous activities in accord with assumption (i). 
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To write the Poisson equation in the same compact form as Eq. (36), 
we introduce the following definitions: 

" L " A =  E k ,  ai+ k,~C,~; B =  Z kxa~, (42) 
i = 1  i = 1  x = l  

RTD* f ,  
L* = 8 n F 2 (AB) ~ (43) 

Y 1 A ---~- In ~-. (44) 

By straightforward manipulations of relations (41)-(44), the Poisson 
equation in the membrane may be then written as: 

d 2 q~* (x) 1 
dx 2 L~g- sinh [~b* (x) -  Y]. (45) 

Eq. (45) can be integrated under the following two assumptions: 

Assumption (vi). In accord with the postulate that the macrocyclic 
antibiotics solubilize cations in the membrane in the form of charged 
complexes IS + , it is assumed that the partition coefficients of such com- 
plexes are so much higher than those of the anions, as well as of these of 
the uncomplexed cations, that the relations 

kis C~s ~> k x ax, ki~ Ci~ >> k i a i (46) 

are satisfied for the normally explored range of concentration, despite 
the fact that the concentrations Cis of the complexed cations in the 
aqueous solutions are generally lower than activities of the free cations 
and anions, ai and a x. 

Assumption (vii). It is also assumed that in the normal range of the 
concentrations the following relation is satisfied between the thickness of 
the membrane and the parameters of the system 

4D* L {[I+Ye_r( DL**T ~21~_i } (47) 
d < ~ - -  \ D  L /  A " 

We show in Appendix B that, as a consequence of assumptions (vi) and 
(vii) Eq. (45) can be approximated by 

2 J. Membrane Biol. 1 

d 2 ~* (x) 8 ~ F 2 A 

dx 2 RTD* e-**(x); O<-x<-d. (48) 
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For the zero electric field, at the center of the membrane (x=d/2), 
which can be deduced from the symmetry of the system, Eq. (48) can be 
integrated to yield 

qS* (x) = In 
2nd2  F2A 

R T D *  

2 x)] 
; O<_x<_d (49) 

where the constant of integration 2 is calculated in terms of solution 
concentrations and activities in Appendix C. 

The Limiting Value of  the Membrane Conductance at Zero Electric Current 

One consequence of assumptions (vi) and (vii) is shown in the Appendix 
to be that the complexes IS  + are the predominant charged species present 
in the membrane, justifying assumption (ii) that the contribution of the 
anions and of the uncomplexed cations can be neglected compared to the 
contributions due to the complexed cations IS  + in any flow of electric 
current across the membrane. We may therefore describe the current 
density in terms of the Nernst-Planck equation for the fluxes of the IS  + 
species as: 

" F dC*s F d~* ] 
I = - R r r ~ u * _ |  .-=~+C*_ . . (50) 

i=1~ '~1 dx  '~ R T  dx J 

After dividing by ~ u* s C's, Eq. (50) can be integrated formally with 
i= i  

respect to x from the left to the right boundary, yielding in the steady state, 
for which I is independent of x 

u*s c*s(d) 
F 2I ya , dx  _ RTF In i=1 t-~,*(0)-O*(d) (51) 

o E c;; c  (0t 
i = 1  i = 1  

where 0" (0 ) -~*  (d) will be recalled to be the internal potential difference 
between the membrane boundaries and C's(0) and C*~(d) are the mem- 
brane concentrations of the species IS  + at the membrane-solution inter- 
faces. Recalling assumption(iv) and combining Eq. (51) with Eqs. (15) 
and (16) for C'is = C'i'~, since the bulk concentrations of the two solutions 
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are identical, we obtain simply 

I 

V 

F 2 

a dx (52) 

o ~u.*,,C*, 
i~1 

where V=~s"-i/s' is the difference of electric potential between the two 
solutions. 

The limiting value of the conductance at zero current, Go, is 

I F 2 
- l i r a  = G o  = ( 5 3 )  

S n 
0 lira ~ u* s C*, 

I--*O �9 

assuming that the limit extraction and integration operation can be 
mutually interchanged. 

Since at zero current the system is at equilibrium, the limiting value 
of the concentrations C*s(x) in the integral of the conductance are those 
that one obtains by combination of Eq. (49) with Eq. (38): 

RTD* 22 
C*s(x)=kls Cis 2rcdEF2A 20 (54) 

0 
Inserting Eq. (54) in the denominator of Eq. (53) and carrying out the 
integration we obtain 

22 RTD* Z 
Go= - -  sin2 \ nd3A " 2 Uiskis* Cis ( 5 5 )  (1+-2-) 

where )< is given by Eq.(5C). It is shown in the Appendix that when 
Eq. (6 C) is valid, Eq. (53) becomes, approximately 

n 

GO = " E U'~Ix kis Cis 
i = i  

(56) 

which expresses the dependence of the membrane conductance on the 
aqueous concentrations of the complexed cations. 

Expressing the aqueous concentrations Cis in terms of the aqueous 
activities of the free ions and the total concentration of the carriers, as in 
2* 



2O 

Eq. (5 A), we obtain 

F a 
C ~  d 
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~ �9 Ki+  

i=1 (57) 

i = 1  i = 1  x = l  

which is the general expression for the membrane  conductance as a func- 

tion of the (known) aqueous concentrations and the parameters of the 
system. 

From Eq. (57) it is immediately apparent that the membrane conduct- 
ance is expected to be directly proportional to the total concentrations of 
antibiotic in the aqueous phase, c TM regardless of the ionic concentrations. 
This expectation is borne out by the experimental results of paper III. 
Moreover,  when association in the aqueous solution is negligible (as is 

usually expected to be the case as previously mentioned), the denominator  
of Eq. (57) can be approximated by unity and the expression of the con- 
ductance can be reduced to the simpler one 

F 2 
C TM ~ * + (58) G o ~ -  --s " u isk isKis  ai 

i = 1  

which becomes 

2 c T o t  * + G o (d) ~- _~ u)~ kj~ Kj~ aj (59) 

when only a single cationic species J+ is present in the solution. The 
simple linear dependence on the ionic activity predicted by Eq. (59), has 
also been verified in the experiments to be reported in paper III. 

It is worth noting that in the situation where the neutralization 
reaction (2) can be neglected in the aqueous phase, Eq. (57) for a single 

cation species J+ simplifies to 

F 2 . (7,Tot U~s kjs Kj+~ aj (60) 
c 0  (J) = 1 + Kj  + aj 

from which it can be seen that the conductance tends to be the limiting 
value 

F 2  C TM u :~ k3~ (61) . i lm Go (J) = ~ -  _~ js 

when K + aj is sufficiently large that K + ai > 1". 

�9 From the perfect proportionality between KCI concentration and bilayer membrane 
conductance which has been observed to hold in paper III at concentrations at least as high 
as 0.1 M, it would appear that K+ai is smaller than unity even at 0.1 M. Therefore, Kf for 
potassium-monactin complexation in the aqueous phase can be inferred to be of the order or 
less than i liter/mole. 
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Discussion 

The Postulate That Neutral Macrocyclic Antibiotics Act as Cation Carriers 

The results deduced here are based on the postulate that molecules 
such as neutral macrocyclic antibiotics of the Nonactin and Valinomycin 
type solubilize cations as mobile charged complexes in the liquid-like 
interior of a phospholipid bilayer membrane. Under appropriate physical 
conditions, defined in the Appendix, the concentrations of such species 
are expected to exceed those of all the other ions inside the membrane, so 
as to determine completely its electrical properties. This postulate is, in 
itself, sufficient to account for the characteristic increase of conductance 
as well as the cationic permselectivity caused by such antibiotics. Its more 
detailed consequences from the present model lead to the experimentally 
testable expectation of a direct proportionality between membrane con- 
ductance and concentration of antibiotic in the aqueous solutions [see 
Eq. (63)], which is indeed observed (Eisenman et al., 1968; Szabo et al., 
1969a, b). In addition, a proportionality to ionic concentration is also 
expected [see Eq. (59)] which is observed when ionic strength effects are 
properly controlled (Szabo et al., 1969 a, b). 

A further unambiguous expectation of the present treatment is a 
directly testable relationship between membrane potential and conduct- 
ance ratio valid in the limit in which the conductance can be expressed by 
Eq. (58). Comparing the general expression of the potential, Eq. (17), with 
the two values of the zero current conductance, Eq. (56), measured suc- 
cessively for a membrane equilibrated with solution (') and ("), respectively, 
we find 

RT G' o 
V o = - l n  ,,. (62) 

F G o 

In particular, when (') and C) refer to single cation solutions of I + and 
J+ at the same ionic activity and in the presence of the same total con- 
centration of the antibiotic, Eq. (62) reduces to: 

G~ =[-uj* kjs KJ+-l= ~ (63) 
G O (I) u* kis Ki + 

when association is negligible in the aqueous solution. Go(I ) and G o(J) 
denote the zero current value of the conductance in such experimental 
conditions. 

Such a relationship is totally different from that expected (or observed) 
for ion exchange membranes of sufficient thickness that the excess charge 
density is negligible compared to the concentration of the fixed (charged) 
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sites (Cont i&Eisenman ,  1965; Eisenman, 1967)*; and it suggests the 
importance of comparing the results of independent measurements of 
membrane  potential and membrane  conductance. Such measurements  
have been reported for Li, Na, K, Rb, and Cs in the presence of Monact in 

(Eisenman et al., 1968) and are extended to Nonactin,  Dinactin, and 

Trinactin in paper III of this series with remarkably precise verification 
of this expectation. 

It should be noted that the postulate that the antibiotic molecules 
are free to move as cation carriers, rather than providing " tunnels"  for 
cation movement  as suggested by Mueller and Rudin (1967), is not  
strictly necessary for the validity of the above discussed identity between 
permeability and conductance ratios. Such an identity is a consequence 
of the assumption that the excess of the permeant  cation species results 
from the presence of the antibiotic and can also be shown to exist for a 
mechanism in which the cations move through neutral antibiotic pores. 
It is more  difficult for such a mechanism to deduce what sort of dependence 

on aqueous antibiotic and salt concentration is to be expected for the 
membrane  conductance, but it is not impossible to conceive of the same 
expectations as for the present carrier model. Therefore, potential and 
conductance measurements  cannot, by themselves, provide a unique test 
for the carrier hypothesis. 

More pertinent to this question is the confrontation between the present 
expectations for the effects of the carrier molecules on the electrical prop- 
erties of bilayer membranes  and the equilibrium properties expected 
for their effects on the extraction of salts from aqueous solutions into bulk 
liquid phases or organic solvents, to be considered both theoretically 
and experimentally in paper II. It will be shown there that the same com- 

bination of equilibrium parameters kjs § + KSki~ Kis , appearing in the per- 
meability and conductance ratios, can be measured from the ratio of the 
equilibrium constants of heterogeneous reactions of the type: 

I + + X -  + S* ~K'~IS+*+ X - *  (64) 
(aqueous) (aqueous) (organic) (organic) (organic 

where the asterisk (.) is now used to denote a bulk organic liquid phase 
in contact with an aqueous solution. Decomposing reaction (64) into 

* In such ion exchangers, the ratio of conductance of the membrane when exposed to 
single salt solutions of different cations depends only on the mobility ratio of these ions and 
is independent of the partition coefficients. This is because the uptake of counterions by an 
ion exchanger from a single salt solution is (by electroneutrality) a function solely of the ion 
exchange capacity of a membrane, any effect on the uptake due to the different partition co- 
efficients being counteracted by the occurrence of appropriately compensating phase-bound- 
ary potentials at the membrane solution interfaces. 
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appropriate elementary reactions, it is easily verified that 

K j  _ k}s Kj+~ (65) 
K: k'is Ki + 

where k~s and k'i~ now represent the partition coefficients between the 
aqueous and bulk solvent (instead of membrane) phases. Despite the fact 
that the mobility ratio does not appear in relation (65) and that the partition 
coefficients k'i~, k~ for the model solvent cannot be expected to be the same 
as those for the membrane, the experimental values of the ratio of equi- 
librium constants in Eq. (65) have been found experimentally to be identi- 
cal to the corresponding permeability or conductance ratios measured 
electrically in bilayer membranes, independent of the lipid composition 
of the bilayer membrane as well as of the particular solvent chosen to 
represent the interior of the membrane in the equilibrium salt extraction 
experiments. 

This result, at first sight surprising, becomes less so when one compares 
the relative dimensions of the alkali cations with those of the macrotetralide 
molecules, as can be done in Fig. 2, where a space-filling model of a 
Nonactin molecule is presented in the known configuration, characteristic 
of its K + complex in the crystalline state (Kilbourn et al., 1967), which is 
almost certainly its configuration in a medium of low dielectric constant. 
It can be inferred that the overall size of the molecule should be quite 
insensitive as to whether the sequestered ion is of the size of the K + 
illustrated in the figure or of the size of Na +, Rb +, Cs +, NH +, or H30  + 
(or even the much smaller Li + or its monohydrate). 

For these particular molecules, one is naturally led to postulate that the 
association reactions with the various cations will occur without altering 
the overall dimensions and shape of the carrier, leading to the formation 
of charged complexes which are indistinguishable in most of their prop- 
erties. In such a case the following approximations are valid 

u*s - -  1 ,  (66)  

k) 
_ s ~_ 1 (67)  

kis k'is 
so that the ratio of permeabilities, conductances, salt extraction constants, 
and aqueous phase association constants are expected to be interrelated by 

Go(J) G Kj; (6S) 
Pi G O (I) K: Kis 
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It should be emphasized that the validity of the approximation of 
equal mobilities, Eq. (66), which is essential in deriving relation (68) and 
therefore in interpreting the experimentally found identity between bulk 
equilibrium and bilayer electrical properties, is justifiable by the above 
arguments only if the charged complexes themselves are the mobile entities 
within the membrane. No simple explanation for the validity of relation 
(66) would be found from the "tunnel model" in which the ions are sup- 
posed to move through channels opened across the membrane by aligned 
rings of stacked antibiotic molecules. 

The remarkably simple relation (68) shows that the permeability and 
conductance ratios are expected to be independent of the lipid composition 
of the membrane [since K) + and Ki + depend only on aqueous solution 
properties as can be seen from their definition Eq. (1)]. In fact, these 
ratios merely express the ratio of the equilibrium constants of the associa- 
tion reactions between the carrier molecule and the cations J+ and I + 
in the aqueous solution phases. This can be most clearly seen by intro- 
ducing relations (66) and (67) into Eq. (17), to yield the simple expression 

for the membrane potential 

RT Cis 
V~ F in ~=1 (69) 

c'i; 
i = 1  

which indicates that the electrical potential in effect depends merely on 
the ratio of the total concentrations of the complexed-cations in the two 
aqueous solutions. The membrane thus behaves merely as a sensor of the 
total concentration of complexed cations in the aqueous phases. Since 
the concentrations of the complexes in a given solution in turn depend 
solely on the equilibrium constants Kj + and Ki +, it should be clear why 
the ion-binding constant of the carrier in an aqueous solution is expected 
to be the principle parameter determining the relative effects of ions on the 
membrane potential. 

The Properties of the Present Model 
and the "Independence Principle" of Hodgkin and Huxley 

Since the identity between permeability and conductance ratios found 
for the present model is expected also for a system obeying the "Independ- 
ence Principle" (A. Hodgkin, personal communication) postulated by 
Hodgkin and Huxley (1952) to govern the ionic fluxes in the squid axon 
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membrane, it is worth examining the present system to see if the "Inde- 
pendence Principle" is characteristic of it. 

The "Independence Principle" requires that the partial ionic current 
of I +, I~, can be written in the form 

F V  

I, = P~ f(V) {C'/e RT _ C;} (70) 

where f ( V )  is a function of voltage which is the same function for all 
ionic species. Following the line of the proof given by Hodgkin (personal 
communication), let us consider the case in which a single permeant cation 
I § is present at the same concentrations in both solutions, C' i = C'i'= C. 
The conductance Go (I) at zero current (and therefore zero voltage since 
C' i = C'i' ) is then given by 

�9 0I~ 
Go(I)= lv imo~(~)=P~f(O ) C (71) 

so that, comparing the two values of the single ion conductances in the 
presence of I + and J+, respectively, we have 

Go (J) _ Pj 
Go(/) P /  

(72) 

On the other hand, the voltage at zero current in the presence of a mixture 
of two cations, J+ and I § is easily found from Eq. (70) to be given in the 
form 

R T  C'i +~i  Cj 
V o = T I n  (73) 

c;' 

so that, comparing Eqs. (72) and (73), it is apparent that the identity 
between permeability and conductance ratios of Eq. (63) also holds for a 
system of ionic currents obeying the "Independence Principle". 

To express the partial current of the species IS  + for our system in a 
form equivalent to Eq. (70) we consider the Nernst-Planck equation, 
written in the form: 

Iis eO,(x ) = d 
Fu* s dx  [Ci* e~*(x)] (74) 
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where I i ,  = FJi~ and q~* - F ~0" 
R T  

brane, we get: 
Integrating formally across 

Iis e (~*(~ 
d 

f u*~ ~ e O* d x  
0 

- -  [C*~(d) e **(al -+*(~ C*~(O)]. 

the mem- 

(75) 

Inserting the boundary condition (15) and (16) and recalling that ~b'=0, 
we have: 

F u*~ kis ,, 
Iis = a [ C ~  e * " -  Cis ] . (76) 

e 4'* d x  
0 

Expressing the aqueous concentrations C'i~ and C's in terms of the aqueous 
ionic activities and assuming low association in the aqueous phases 
( C s =  Tot C S ) we find 

Tot * + 
I i ~ -  FC~ ui~ kls Ki~ ,, e4/, a [ai - a'i]. (77) 

~ e O*(x) d x  
0 

Eq. (77) has the same form of Eq. (70) where 

and 

p F C  T~ u*  s k is  + ~i = --s K i s  

1 
f ( V ) =  a 

e ~*(x) d x  
0 

In particular, when a' i = a'i'= a, Eq. (79) becomes 

(78) 

(79) 

r / ~ T o t  ~ . ,  ki s Ki+ a 
Ii s l~ ~s  Uis - a [e  ~ ' ' -  13 (80)  

~ e ~ d x  
o 

where, in the limit of zero current, the integral can be calculated using the 
equilibrium profile of the potential given by Eq. (49). Considering such 
expression for the potential as well as the equation for the parameter )~, 
Eq. (5 C), it is apparent that in the same limit, expressed by relation (6 C), 
in which the identity between permeability and conductance ratios holds 
true, the potential ~b* (x) is approximately constant and equal to 0, so that 
Eq. (79) becomes simply 

1 
f(0) =~- .  (81) 
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Therefore, for vanishingly small currents, at least one aspect of the 
"Independence Principle" is certainly compatible with an ion permeation 
mechanism utilizing a neutral carrier, namely the equality of the functions 
f(V) at zero voltage for all the ionic species when present alone in the 
system at the same concentration in the solutions. 

In the presence of a mixture of two or more ions, or even of a single 
ion at different concentrations in the solutions, Eq.(77) is still valid. 
However, the integral in the denominator,  although being the same for all 
the ionic species, is in general a complicated function of all the para- 
meters of the system. This problem will be dealt with explicitly in a sub- 
sequent paper (Ciani et al., 1969 c), where the expectations for the conduc- 
tance of a membrane exposed asymmetrically to ionic mixtures will be 
derived. 

Conclusions 

Starting from the knowledge that neutral macrocyclic antibiotics 
solubilize monovalent cations in hydrocarbon solvents as mobile positive- 
ly charged complexes, a model for the effects of these molecules on phos- 
pholipid bilayer membranes is proposed in which the electrical properties 
are deduced for a simple solvent membrane of the thinness of the phos- 
pholipid bilayer. The following conclusions have been reached: 

(1) Under  appropriate conditions, an excess of positive complexes 
over all other charged species is expected in the membrane interior. This 
makes certain integrations of the flux equations relatively easy. 

(2) An expression for the membrane potential in ionic mixtures is 
deduced in terms of the aqueous concentrations of ions and of antibiotic. 
Under usual conditions, this equation is identical in form to the Gold- 
man-Hodgkin-Katz equation - with the permeability ratio representing 
combinations of such membrane parameters as the mobilities of the com- 
plexed-cations, the partition coefficients of the complexed-cations, and the 
formation constants of the complexes in aqueous solution. 

(3) An equation for the membrane conductance in the limit of zero 
current is also derived for a membrane exposed on both sides to the same 
solution. This depends on the same parameters as did the membrane 
potential. 

(4) Indeed, it is shown that the ratio of conductance measured in 
single salt solutions for two different cations should be identical to their 
permeability ratio, thereby providing an immediately testable expectation 
of the theoretical treatment. 
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(5) The membrane conductance is also expected to be proportional 
to the concentration of salt for dilute solutions but may become independ- 
ent of concentrations at high concentrations. 

(6) The membrane conductance is expected to be directly proportional 
to the total concentration of antibiotic in the aqueous solution. 

(7) Although conclusions (2) through (5) are properties of a neutral 
carrier mechanism, they are also conceivable for membranes in which the 
neutral antibiotics might form "tunnels" for cation permeation. 

(8) However, if the overall size of the complex is approximately the 
same regardless of the particular cation bound, as is likely for the usual 
macrocyclic antibiotics, the mobilities of the complexes will be the same 
for all cations. In this event, the permeability and conductance ratios are 
expected to depend only on equilibrium selectivity parameters, which will 
be shown in the following paper to be measurable independently by the 
bulk extraction of salt into an appropriate organic solvent phase. The 
comparison of membrane electrical properties with equilibrium extraction 
properties provides a means for distinguishing neutral carriers from neutral 
"tunnels ". 

(9) Lastly, the properties of the neutral carrier mechanism proposed 
here are shown to be compatible with the "Independence Principle" 
of Hodgkin and Huxley. 

This work was supported by National Science Foundation grant GB 6685 and by U.S. 
Public Health Service Grant  GM 14404-02/03. 

Appendix A 

Chemical Composition of an Ionic Solution 

in the Presence of Neutral Ion-Binding Carriers 

In this appendix we express the aqueous concentration of the carrier, C s and its complexes, 
Ci~ and Cisx, in terms of the ionic activities at, a~, and of the total concentration of carriers, C[~ 

If n is the number of species of cations and m that of the anions, Eqs. (1) and (2) and as- 
sumption (i) give 

Ci~ C.~ C~s x C.~,. 
C.=  . . . . . . . . . . . . . . .  + (1A) 

Ki  + a i K L a. K ~  Kis x a i a x K.~ Kns m a. a,,, 

or, adding the numerators and the denominators 

C~= . i=t i=1 :,=a (2A) 

i = 1  i = 1  x = l  
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From the conservation of mass of the carrier species, we have 

n 

--sCT~ C~= ~ C,~+ ~ ~ Ci~ ~. (3A) 
i = 1  i = 1  x = l  

Substituting the left hand side of Eq. (3A) in the numerator of Eq. (2A) and solving with 
respect to C~, we obtain 

C~ xo, 
C , -  (4A) 

1 + ~, Ki+~ a i + ~ Ki+~ Kis x a~ ax 
i = 1  i = 1  x = l  

From Eqs. (1A) and (4A) the following relations are now immediately obtained 

K~ a~ C~ ~ 
C~,- ; i = 1, 2 . . . . .  n, (5 A) . ~ m 

I+ Z Ki+~ ai + Z Ki + Ka~ ai ax 
i ~ l  i = 1  x = l  

Ki + Kisx ai ax --sCT~ 
Ci~= ; i = l ,  2 , . . . ,n ;  x =  1,2, . . . ,m. (6A) 

1 + ~ Ki+~ a~ + Ki + Ki~ x a i a x 
i = 1  i = l  x = l  

Appendix B 

Electric Potential and Concentration Profiles in the System at Equilibrium 

In this appendix we examine, for a membrane interposed between identical aqueous 
solutions, the profiles of concentration and electric potential, which must be evaluated in 
order to assess the limiting value of the membrane conductance at zero current. The deter- 
mination of the profiles of the electric potential and of the ionic concentrations throughout 
the system in the equilibrium situation where the compositions of the two aqueous phases are 
identical requires the integration of the Poisson-Boltzman equation as well as the use of 
appropriate boundary conditions at the membrane-solution interfaces. Schematizing such 
interfaces as ideal surfaces of discontinuity of the dielectric constant and of the standard 
chemical potential, we shall assume, consistently with electrostatics: 1) continuity of the 
electric potential, and 2) continuity of the electric displacement vector, defined as the product 
of the electric field by the permittivity of the dielectric medium. 

Since, for identical compositions of solutions (') and (") of-concern here, the electric 
potential as well as the concentration profiles are symmetrical at equilibrium with respect 
to the central region of the membrane (x = d/2), we need, when convenient, consider explicitly 
only the results referring to the left of such region; so, in particular, the integration of the 
Poisson-Boltzman equation in the aqueous solution, Eq. (36); for vanishing electric field and 
zero charge density at - oe gives 

( l + Ke~/C ,~2. 
qS(x)=ln ~ j  , - o o < x < O  (1B) 

where K is an integration constant and the coordinate 0 refers to the left membrane-solution 
interface. 
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Defining 
4]* (x) = qS* (x)-  Y; O<_x<_d (2B) 

where Y is given by relation (44), the Poisson-Boltzman equation within the membrane phase, 
Eq. (45), becomes simply 

d 2 4]*(x) 1 
,ix 2 - L, 2 sinh 4]* (x); O<_x<<_d. (3B) 

It is appropriate to observe that now, as a consequence of assumption (vi), Y is a positive 
quantity, representing the value of the potential difference expected theoretically (although 
not experimentally accessible) between the interior of the aqueous solution and that of a 
bulk membrane phase much thicker than its Debye length. It is therefore clear intituitively, 
and can be rigorously proven by a tedious sequence of mathematical steps, that the potential 
values throughout the whole system are positive and less than Y. This implies that 4]* (x), 
defined in Eq. (2 B) satisfies the relation 

4]*(x)<0; O<-x<_d (4B) 

so that, from Eq. (3 B) and the elementary properties of the hyperbolic sine, we deduce 

d 2 4]* (x) d 2 q~* (x) 
- - - < 0 ;  O < x < d .  (5B) 

dx 2 dx 2 

The only profile compatible with relation (5 B) and with the symmetry of the system is a curve 
monotonously increasing from the left boundary up to the center, x = d/2, presenting a maxi- 
mum there, and decreasing symmetrically in the remaining portion of the membrane. Defining 
for simplicity of notation 

we have then 

d~* 
- q~*' (6 B) 

dx 

d d 
qS*'> 0, 0 < x < 2 ;  qS*' ( d ) = 0 ;  ~b*'(x) <0, ~ - < x  <d.  (7B) 

A first integration of Eq. (3 B) gives 

[qS*' 2 *, 2__ 2 (x)] -- [q~ (0)] -- L--7/- [cosh 6" (x) -  cosh 4]* (0)], (8 B) 

Recalling that the electric field and therefore q5*' must vanish at x = d/2, Eq. (8 B) gives, for 
x=d/2,  

E EqS*'(0)] 2=L~22 cosh4*(0)-cosh4]* ~- . (9B) 

Substituting the right hand side of Eq. (9 B) in Eq. (8 B), we find 

E ,10 , [qS*'(x)] 2 = L ~  2 cosh 4]* (0)- cosh 6* ~- �9 

Taking the square root of both sides of Eq. (10 B) and recalling that ~b*'(x)> 0 in the left half 
of the membrane [see relation (7B)], we get 

~b*'(x)= cosh 4]* (x) -  cosh 0 < x  <d~ (llB) 
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Eq. (11 B) cannot be integrated analytically, unless an approximation is made whose justifi- 
cation and precise statement requires, however, some consideration of the properties of the 
exact Eq. (11 B), as well as some estimates on the dependence Of its integral on the membrane 
thickness and the solution composition. Let us start by integrating Eq. (I 1 B) formally across 
the half of the membrane between 0 and d/2: 

E I cosh ~ * -  cosh 6" " d 
~*(o) If2 L* 

(12B) 

Eq. (12B) shows that the integral on the left side vanishes when the ratio d/L* is made to tend 
to zero, which can be done either by decreasing the thickness of the membrane or by diluting 
the outside solution with a consequent increase of L* [see definition of L* given by Eq. (41)]. 
We show now that the vanishing of the integral in (12B) for d/L* <0 implies that the two 
limits of integration ~b* (0) and qS* (d/2) approach indefinitely closely to each other. This can 
be seen by noting that, since ~* (0)< qS* (x)< q~* (d/2)<0, the following inequalities hold 

cosh qS* (x)-cosh qS* ( d ) <  sinh q~* (0)[qS* (x)-q~* ( d ) ]  <~[q~e y * ( 2 ) _  q ~ d  * (x)]; 

d 
O ~ x ~ - -  

- -  - -  2 

(13B) 

so that 

( d )  ]--~ ?*(a/z) r . / d ' , 7 - ~  y ,~*(a/2) r ~ dq~* = ]/~ e-~ - ,  _q~, d P L 

Performing the integration in the first integral we find 

4 L* 

which clearly shows that 

lim 
~ o  

(16B) 

It is now necessary to show that not only the difference ~b* (d/2)- qS* (0) but also the individual 
values of the potential qS* (0) and qS* (d/2), approach to zero when d/L* vanishes. Recalling 
the boundary condition of continuity of the electric displacement vector, from Eq. (11B), 
and the derivative of Eq. (1 B) we get at the left boundary (x = O) 

K _ ~ O *L  L \~TJ[-C~176 (17B) 
1 - K 2 4 D L *  

Expressing K in terms of qS(O) by means of Eq. (1 B) and substituting in (17B) we find 

D*L 
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Since the ratio L/L* is always finite, whereas the square root in the right hand side vanishes 
according to Eq. (16B), it is apparent  that 

lira 4)(0)=0. (19B) 
d 

~ o o  

From the boundary condition of continuity of the electric potential, expressed at the left 
boundary as 

4) (0) = 4)* (0) (20 B) 

and from Eqs. (19B) and (16B) we get 

lira 4)*(0)= lira 4)* ( d ) = 0 .  (21 B) 
d 0 d 0 

\ z /  
L~ Z~ ~ 

The result expressed by relation (21 B) proves that, either by reducing the thickness of the 
membrane or by diluting the outside solutions (which can be done without altering the value 
of Y), we can, in principle, get the potential as close to zero as we want. Therefore, since the 

relation e r >> 1 (22 B) 

must hold as a consequence of assumption (vi), there is certainly a range for the values of the 
parameter d/L* in which the following approximation can be used to integrate Eq. ( l i B )  

e ~*(:~)- Y + e - 4,*(x) + r e -  4*(x) + Y 
cosh q~* ( x ) -  - (23 B) 

2 2 

and analogously for cosh ~* (d/2). 
Using Eq. (23 B), Eq. (11 B) becomes 

e Y 

l-e -~*- e-**~a/2q-~ d4)* = ~ -  dx (24B) 

or, recalling the definitions of Y and L*, Eqs. (42) and (41), 

, /8~F2A' ,~dx [e-4'*-e-'t'*'d/2)]-Sd4) = ~ , ~ )  . (25B) 

Under the conditions that 4)* attains its maximum value at x=d/2, the integration of 
Eq. (25 B) gives 

{ 2rcFed2A I d (  d )1}  4)*(x)=ln - - -  cos 2 - x  ; O<-x<d. (26B) 
RTD* 22 

Eq. (26B), which contains the as yet undetermined parameter 2, has been used to evaluate 
the concentration profiles as well as the integral conductance, given in Eqs. (56) and (57). 

We can now show also that, in the same range of the values ofd/L* in which 4)*(x)~ Y, 
so that the approximate Eq. (25B) can be used instead of (i1 B), the concentrations in the 
membrane of the anions X -  are negligible with respect to those of the complexed cations IS + : 

Using Eq. (36), the ratio of the total concentrations of the IS + species to that of the anions 
is given by 

n n 

32 c~(~) 32 G c,~ 
i=1 _ i=1 e 2e,*r (27B) 

m m 

32 c~(x) Y~ kx cx 
x = l  x = l  
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By use of the definition of 11, Eq. (44), and recalling that k i ai ~ k~s Ci, (assumption (vi)) Eq. 
(27 B) gives directly the desired proof, 

n 

c*,(x) 
i= l  

c* (x) 
i = l  

' -  e2[Y-4~*(x)l '~ e2Y  >~ 1. (28B) 

So far we have shown that, given that eye> 1, there is certainly a range of the aqueous ionic 
concentrations in which the condition 

r162 ( d ) ~  Y (29B) 

is satisfied, so that the approximation (23 B) used in the derivation of Eqs. (24 B) through (28 B) 
is valid. To define now this range in terms of a relationship between the thickness of the 
membrane, the aqueous composition, and the other parameters of the system, we proceed 
as follows. Recalling that q5 (0) > 0, and replacing 1 with e 4~(~ in the left hand side of Eq. (18 B), 
we find after straightforward manipulations 

d 
r ~ +V2-D~-  (3oB) 

Inserting Eq. (15B) in Eq. (13B) we get 

vL c~ q~* (0)--cosh q~*/,/\n(._]|~< 1 ey _ _  
\ 2 J J  41/2 

so that (30B), combined with (31 B) leads to 

E 1D*Ld ] 
r lq 4 DL*2 er �9 

From (32B) and (15B) we finally get 

d 
L* (31 B) 

(32B) 

d lnE1 1 D*Ld r 1 d~  
~ b * ( y ) < 2  -t 4 DL,2 e ]+~6 er L, 2 (33B) 

or, recalling that In (1 + x) < x 

( d )  i D*Ldey 1 d2 
r ==-2 9L .2 + ~ - z ~ - e L  (34B) 

Comparing Eqs. (19B) and (34B), it can be easily seen that condition (29B), which is of 
central importance for the validity of all other results, is certainly satisfied if the relation 

or, equivalently, 

3 J. Membrane Biol. 1 

D* 
d2+8 ~ -  Ld< 16 ye-rL .2 (35B) 

D L*D 2�89 (36B) 
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is satisfied. Note that when the bracketed term is bigger than one, relation (36B) reduces 

approximately to d <{ 2RTD* Y'] I- (37B) 

where A and Y have been defined in Eqs. (42) and (44), respectively. 

Appendix C 

Determination of the Parameter 2from the Boundary Condition 
From the continuity of the electric potential and the electric displacement vector at 

the left interface we have 
4) (0)= ~* (0) (1 C) 

and 
D de (0 )=D*  d~b*(0) (2C) 

dx dx 

Expressing ~b (x) and q~* (x) by means of Eqs. (1 B) and (26 B), relations (1 C) and (2 C) become 

2 
C O S  - -  

I+KI_K (2ztF2d2A~ / "~=* it 2 (3C) 

and 
K D*L 2 

1 - K  2 - 2Dd tg 2 (4C) 

respectively. Eliminating K between (3 C) and (4 C), and recalling the definitions of L, Eq. (35), 
we find 2 

R TD* 22 - 1 + sin ~ - .  (5 C) 
\v-Zc  

Although this equation cannot be explicitly solved with respect to J, an approximate 
value of 2 can be found when the aqueous solutions are sufficiently dilute that the condition 

2~FZ d2 A 
1 (6 C) 

RTD* 

is satisfied. Since the right hand side of Eq. (5C) is bigger than unity. (0-< ~--~ < ~---'~ condition 
�9 " \  - 2  2 /  

(6C) implies 
2 

C O S  2 - -  

2 t 
1 ~ 2 ~ < . .  22 (7C) 

so that 

and Eq. (5 C) reduces approximately to 

2nFZdZA 

RTD* 
(9C) 

Substituting Eq. (9C) in Eq. (55) and recalling that because of (8C), sin )~/);-~ 1, we obtain 
directly the approximate expression of the conductance given by Eq. (56). 
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